一、金屬粉末注射成型技術工藝特點
金屬粉末注射成型技術是集塑料成型工藝學、高分子化學、粉末冶金工藝學和金屬材料學等多學科透與交叉的產物,采用模具可注射成型坯件并通過燒結快速制造高密度、高精度、三維復雜形狀的結構零件,能夠快速準確地將設計思想物化為具有一定結構、功能特性的制品,并可直接批量生產出零件,是制造技術行業一次新的變革。該工藝技術不僅具有常規粉末冶金工藝工序少、無切削或少切削、經濟效益高等優點,而且克服了傳統粉末冶金工藝制品、材質不均勻、機械性能低、不易成型薄壁、復雜結構的缺點,特別適合于大批量生產小型、復雜以及具有特殊要求的金屬零件。
二、金屬粉末注射成型技術工藝流程
粘結劑→混煉→注射成形→脫脂→燒結→后處理。
1、粉末金屬粉末
MIM工藝所使用的金屬粉末顆粒尺寸一般在>0.5~20>μ>m>;從理論上講,粉末顆粒越細,比表面積也越大,易于成型和燒結。而傳統的粉末冶金工藝則采用大于>40>μ>m>的較粗的粉末。>
2、有機膠粘劑
有機膠粘劑作用是粘接金屬粉末顆粒,使混合料在注射機料筒中加熱具有流變性和潤滑性,也就是說帶動粉末流動的載體。因此,粘接劑的選擇是整個粉末的載體。因此,粘拉選擇是整個粉末注射成型的關鍵。對有機粘接劑要求:
1)用量少,用較少的粘接劑能使混合料產生較好的流變性;
2)不反應,在去除粘接劑的過程中與金屬粉末不起任何化學反應;
3)易去除,在制品內不殘留碳。
3、混料
把金屬粉末與有機粘接劑均勻摻混在一起,使各種原料成為注射成型用混合料。混合料的均勻程度直接影響其流動性,因而影響注射成型工藝參數,以至最終材料的密度及其它性能。注射成形本步工藝過程與塑料注射成型工藝過程在原理上是一致的,其設備條件也基本相同。在注射成型過程中,混合料在注射機料筒內被加熱成具有流變性的塑性物料,并在適當的注射壓力下注入模具中,成型出毛坯。注射成型的毛坯的微觀上應均勻一致,從而使制品在燒結過程中均勻收縮。
4、萃取
成型毛坯在燒結前必須去除毛坯內所含有的有機粘接劑,該過程稱為萃取。萃取工藝必須保證粘接劑從毛坯的不同部位沿著顆料之間的微小通道逐漸地排出,而不降低毛坯的強度。粘結劑的排除速率一般遵循擴散方程。燒結燒結能使多孔的脫脂毛坯收縮至密化成為具有一定組織和性能的制品。盡管制品的性能與燒結前的許多工藝因素有關,但在許多情況下,燒結工藝對最終制品的金相組織和性能有著很大、甚至決定性的影響。
5、后處理
對于尺寸要求較為精密的零件,需要進行必要的后處理。這工序與常規金屬制品的熱處理工序相同。
三、MIM工藝的特點
MIM工藝與其它加工工藝的對比
MIM使用的原料金屬粉末粒徑在>2-15>μ>m>,而傳統粉末冶金的原料金屬粉末粒徑大多在>50-100>μ>m>。>MIM>工藝的成品密度高,原因是使用微細粉末。>MIM>工藝具有傳統粉末冶金工藝的優點,而形狀上自由度高是傳統粉末冶金所不能達到的。傳統粉末冶金限于模具的強度和填充密度,形狀大多為二維圓柱型。
傳統的精密鑄造脫燥工藝為一種制作復雜形狀產品極有效的技術,近年使用陶心輔助可以完成狹縫、深孔穴的成品,但是礙于陶心的強度,以及鑄液的流動性的限制,該工藝仍有某些技術上的困難。一般而言,此工藝制造大、中型零件較為合適,小型而復雜形狀的零件則以MIM>工藝較為合適。比較項目制造工藝>MIM>工藝傳統粉末冶金工藝粉末粒徑>(>μ>m)2-1550-100>相對密度>(%)95-9880-85>產品重量>(g)>小于或等于>400>克>10->數百產品形狀三維復雜形狀二維簡單形狀機械性能優劣。
MIM制程和傳統粉末冶金法的比較壓鑄工藝用在鋁和鋅合金等熔點低、鑄液流動性良好的材料。此工藝的產品因材料的限制,其強度、耐磨性、耐蝕性均有限度。>MIM>工藝可以加工的原材料較多。
精密鑄造工藝,雖然在近年來其產品的精度和復雜度均提高,但仍比不上脫蠟工藝和MIM>工藝,粉末鍛造是一項重要的發展,已適用于連桿的量產制造。但是一般而言,鍛造的工程中熱處理的成本和模具的壽命還是有問題,仍待進一步解決。
傳統機械加工法、近來靠自動化而提升其加工能力,在效果和精度上有極大的進步,但是基本的程序上仍脫不開逐步加工(>車削、刨、銑、磨、鉆孔、拋光等>)來完成零件形狀的方式。機械加工方法的加工精度遠優于其他加工方法,但是因為材料的有效利用率低,且其形狀的完成受限于設備與刀具、有些零件無法用機械加工完成。相反,MIM可以有效利用材料,不受限制,對于小型、高難度形狀的精密零件的制造。MIM工藝比較機械加工而言,其成本較低且效率高,具有很強的競爭力。
MIM技術并非與傳統加工方法競爭,而是彌補傳統加工方法在技術上的不足或無法制作的缺陷。>MIM>技術可以在傳統加工方法制作的零件領域上發揮其特長MIM工藝在零部件制造方面所具有的技術優勢可成型高度復雜結構的結構零件。
注射成型工藝技術利用注射機注射成型產品毛坯,保證物料充分充滿模具型腔,也就保證了零件高復雜結構的實現。以往在傳統加工技術中先作成個別元件再組合成組件的方式,在使用MIM技術時可以考慮整合成完整的單一零件,大大減少步驟、簡化加工程序。MIM和其他金屬加工法的比較制品尺寸精度高,不必進行二次加工或只需少量精加工。
注射成型工藝可直接成型薄壁、復雜結構件,制品形狀已接近最終產品要求,零件尺寸公差一般保持在±0.1->±>0.3>左右。特別對于降低難于進行機械加工的硬質合金的加工成本,減少貴重金屬所加工損失尤其具有重要意義。制品微觀組織均勻、密度高、性能好。
在壓制過程中由于模壁與粉末以及粉末與粉末之間的摩擦力,使得壓制壓力分布非常不均勻,也就導致了壓制毛坯在微觀組織上的不均勻,這樣就會造成壓制粉末冶金件在燒結過程中收縮不均勻,因此不得不降低燒結溫度以減少這種效應,從而使制品孔隙度大、材料致密性差、密度低,嚴重影響制品的機械性能。反之注射成型工藝是一種流體成型工藝,粘接劑的存在保障了粉末的均勻排布從而可消除毛坯微觀組織上的不均勻,進而使燒結制品密度可達到其材料的理論密度。一般情況下壓制產品的密度最高只能達到理論密度的85%。制品高的致密性可使強度增加、韌性加強,延展性、導電導熱性得到改善、磁性能提高。效率高,易于實現大批量和規?;a。
MIM技術使用的金屬模具,其壽命和工程塑料注射成型具模具相當。由于使用金屬模具,適合于零件的大量生產。由于利用注射機成型產品毛坯,極大地提高了生產效率,降低了生產成本,而且注射成型產品的一致性、重復性好,從而為大批量和規?;I生產提供了保證。適用材料范圍寬,應用領域廣闊(>鐵基,低合金,高速鋼,不銹鋼,克閥合金,硬質合金>)。
可用于注射成型的材料非常廣泛,原則上任何可高溫澆結的粉末材料均可由MIM工藝造成零件,包括了傳統制造工藝中的難加工材料和高熔點材料。此外,MIM也可以根據用戶的要求進行材料配方研究,制造任意組合的合金材料,將復合材料成型為零件。注射成型制品的應用領域已遍及國民經濟各領域,具有廣闊的市場前景。